\(\int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx\) [60]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 102 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=-\frac {(A-B) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {(3 A-8 B) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(3 A+7 B) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )} \]

[Out]

-1/5*(A-B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^3+1/15*(3*A-8*B)*sin(d*x+c)/a/d/(a+a*cos(d*x+c))^2+1/15*(3*A+7*B)*sin
(d*x+c)/d/(a^3+a^3*cos(d*x+c))

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.138, Rules used = {3047, 3098, 2829, 2727} \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\frac {(3 A+7 B) \sin (c+d x)}{15 d \left (a^3 \cos (c+d x)+a^3\right )}+\frac {(3 A-8 B) \sin (c+d x)}{15 a d (a \cos (c+d x)+a)^2}-\frac {(A-B) \sin (c+d x)}{5 d (a \cos (c+d x)+a)^3} \]

[In]

Int[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^3,x]

[Out]

-1/5*((A - B)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^3) + ((3*A - 8*B)*Sin[c + d*x])/(15*a*d*(a + a*Cos[c + d*x
])^2) + ((3*A + 7*B)*Sin[c + d*x])/(15*d*(a^3 + a^3*Cos[c + d*x]))

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3098

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + D
ist[1/(a^2*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[e
 + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {A \cos (c+d x)+B \cos ^2(c+d x)}{(a+a \cos (c+d x))^3} \, dx \\ & = -\frac {(A-B) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}-\frac {\int \frac {-3 a (A-B)-5 a B \cos (c+d x)}{(a+a \cos (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {(A-B) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {(3 A-8 B) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(3 A+7 B) \int \frac {1}{a+a \cos (c+d x)} \, dx}{15 a^2} \\ & = -\frac {(A-B) \sin (c+d x)}{5 d (a+a \cos (c+d x))^3}+\frac {(3 A-8 B) \sin (c+d x)}{15 a d (a+a \cos (c+d x))^2}+\frac {(3 A+7 B) \sin (c+d x)}{15 d \left (a^3+a^3 \cos (c+d x)\right )} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.82 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.32 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\frac {\cos \left (\frac {1}{2} (c+d x)\right ) \sec \left (\frac {c}{2}\right ) \left (5 (3 A+8 B) \sin \left (\frac {d x}{2}\right )-15 (A+2 B) \sin \left (c+\frac {d x}{2}\right )+15 A \sin \left (c+\frac {3 d x}{2}\right )+20 B \sin \left (c+\frac {3 d x}{2}\right )-15 B \sin \left (2 c+\frac {3 d x}{2}\right )+3 A \sin \left (2 c+\frac {5 d x}{2}\right )+7 B \sin \left (2 c+\frac {5 d x}{2}\right )\right )}{30 a^3 d (1+\cos (c+d x))^3} \]

[In]

Integrate[(Cos[c + d*x]*(A + B*Cos[c + d*x]))/(a + a*Cos[c + d*x])^3,x]

[Out]

(Cos[(c + d*x)/2]*Sec[c/2]*(5*(3*A + 8*B)*Sin[(d*x)/2] - 15*(A + 2*B)*Sin[c + (d*x)/2] + 15*A*Sin[c + (3*d*x)/
2] + 20*B*Sin[c + (3*d*x)/2] - 15*B*Sin[2*c + (3*d*x)/2] + 3*A*Sin[2*c + (5*d*x)/2] + 7*B*Sin[2*c + (5*d*x)/2]
))/(30*a^3*d*(1 + Cos[c + d*x])^3)

Maple [A] (verified)

Time = 0.91 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.55

method result size
parallelrisch \(-\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\left (A -B \right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {10 B \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3}-5 A -5 B \right )}{20 a^{3} d}\) \(56\)
derivativedivides \(\frac {\frac {\left (-A +B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}\) \(64\)
default \(\frac {\frac {\left (-A +B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5}-\frac {2 \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) B}{3}+A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )+B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}\) \(64\)
risch \(\frac {2 i \left (15 B \,{\mathrm e}^{4 i \left (d x +c \right )}+15 A \,{\mathrm e}^{3 i \left (d x +c \right )}+30 B \,{\mathrm e}^{3 i \left (d x +c \right )}+15 A \,{\mathrm e}^{2 i \left (d x +c \right )}+40 B \,{\mathrm e}^{2 i \left (d x +c \right )}+15 A \,{\mathrm e}^{i \left (d x +c \right )}+20 B \,{\mathrm e}^{i \left (d x +c \right )}+3 A +7 B \right )}{15 d \,a^{3} \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )^{5}}\) \(114\)
norman \(\frac {-\frac {\left (A -B \right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 a d}+\frac {\left (A +B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 a d}+\frac {\left (3 A +2 B \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 a d}-\frac {\left (3 A +2 B \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{30 a d}+\frac {\left (6 A -B \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{30 a d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} a^{2}}\) \(143\)

[In]

int(cos(d*x+c)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*a)^3,x,method=_RETURNVERBOSE)

[Out]

-1/20*tan(1/2*d*x+1/2*c)*((A-B)*tan(1/2*d*x+1/2*c)^4+10/3*B*tan(1/2*d*x+1/2*c)^2-5*A-5*B)/a^3/d

Fricas [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.91 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\frac {{\left ({\left (3 \, A + 7 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (3 \, A + 2 \, B\right )} \cos \left (d x + c\right ) + 3 \, A + 2 \, B\right )} \sin \left (d x + c\right )}{15 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*((3*A + 7*B)*cos(d*x + c)^2 + 3*(3*A + 2*B)*cos(d*x + c) + 3*A + 2*B)*sin(d*x + c)/(a^3*d*cos(d*x + c)^3
+ 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [A] (verification not implemented)

Time = 1.01 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.15 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\begin {cases} - \frac {A \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{20 a^{3} d} + \frac {A \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a^{3} d} + \frac {B \tan ^{5}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{20 a^{3} d} - \frac {B \tan ^{3}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{6 a^{3} d} + \frac {B \tan {\left (\frac {c}{2} + \frac {d x}{2} \right )}}{4 a^{3} d} & \text {for}\: d \neq 0 \\\frac {x \left (A + B \cos {\left (c \right )}\right ) \cos {\left (c \right )}}{\left (a \cos {\left (c \right )} + a\right )^{3}} & \text {otherwise} \end {cases} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))**3,x)

[Out]

Piecewise((-A*tan(c/2 + d*x/2)**5/(20*a**3*d) + A*tan(c/2 + d*x/2)/(4*a**3*d) + B*tan(c/2 + d*x/2)**5/(20*a**3
*d) - B*tan(c/2 + d*x/2)**3/(6*a**3*d) + B*tan(c/2 + d*x/2)/(4*a**3*d), Ne(d, 0)), (x*(A + B*cos(c))*cos(c)/(a
*cos(c) + a)**3, True))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 115, normalized size of antiderivative = 1.13 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\frac {\frac {B {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}} + \frac {3 \, A {\left (\frac {5 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {\sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^3,x, algorithm="maxima")

[Out]

1/60*(B*(15*sin(d*x + c)/(cos(d*x + c) + 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d
*x + c) + 1)^5)/a^3 + 3*A*(5*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 75, normalized size of antiderivative = 0.74 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=-\frac {3 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 10 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{60 \, a^{3} d} \]

[In]

integrate(cos(d*x+c)*(A+B*cos(d*x+c))/(a+a*cos(d*x+c))^3,x, algorithm="giac")

[Out]

-1/60*(3*A*tan(1/2*d*x + 1/2*c)^5 - 3*B*tan(1/2*d*x + 1/2*c)^5 + 10*B*tan(1/2*d*x + 1/2*c)^3 - 15*A*tan(1/2*d*
x + 1/2*c) - 15*B*tan(1/2*d*x + 1/2*c))/(a^3*d)

Mupad [B] (verification not implemented)

Time = 0.20 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.65 \[ \int \frac {\cos (c+d x) (A+B \cos (c+d x))}{(a+a \cos (c+d x))^3} \, dx=\frac {\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (15\,A+15\,B-3\,A\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-10\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+3\,B\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\right )}{60\,a^3\,d} \]

[In]

int((cos(c + d*x)*(A + B*cos(c + d*x)))/(a + a*cos(c + d*x))^3,x)

[Out]

(tan(c/2 + (d*x)/2)*(15*A + 15*B - 3*A*tan(c/2 + (d*x)/2)^4 - 10*B*tan(c/2 + (d*x)/2)^2 + 3*B*tan(c/2 + (d*x)/
2)^4))/(60*a^3*d)